Efficient Synthesis of Quantum Logic Circuits by Rotation-based Quantum Operators and Unitary Functional Bi-decomposition
نویسندگان
چکیده
Quantum information processing technology is in its pioneering stage and no efficient method for synthesizing quantum circuits has been introduced so far. This paper introduces an efficient analysis and synthesis framework for quantum logic circuits. The proposed synthesis algorithm and flow can generate a quantum circuit using the most basic quantum operators, i.e., the rotation and controlled-rotation primitives. We will introduce the notion of quantum factored forms, and develop a canonical and concise representation of quantum logic circuits in the form of quantum decision diagrams (QDD’s) which are amenable to efficient manipulation and optimization including recursive unitary functional bi-decomposition. This representation will produce a rigorous graph-based framework for the analysis and synthesis of quantum logic circuits. Subsequently, an effective QDDbased algorithm will be developed and applied to automatic synthesis of quantum logic circuits.
منابع مشابه
Efficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملEfficient Genetic Based Methods for Optimizing the Reversible and Quantum Logic Circuits
Various synthesis methods have been proposed in the literature for reversible and quantum logic circuits. However, there are few algorithms to optimize an existing circuit with multiple constraints simultaneously. In this paper, some heuristics in genetic algorithms (GA) to optimize a given circuit in terms of quantum cost, number of gates, location of garbage outputs, and delay, are proposed. ...
متن کاملReversible logic synthesis by quantum rotation gates
A rotation-based synthesis framework for reversible logic is proposed. We develop a canonical representation based on binary decision diagrams and introduce operators to manipulate the developed representation model. Furthermore, a recursive functional bi-decomposition approach is proposed to automatically synthesize a given function. While Boolean reversible logic is particularly addressed, ou...
متن کاملSynthesis of multi-qudit hybrid and d-valued quantum logic circuits by decomposition
Recent research in generalizing quantum computation from 2-valued qudits to dvalued qudits has shown practical advantages for scaling up a quantum computer. A further generalization leads to quantum computing with hybrid qudits where two or more qudits have different finite dimensions. Advantages of hybrid and dvalued gates (circuits) and their physical realizations have been studied in detail ...
متن کاملNovel efficient fault-tolerant full-adder for quantum-dot cellular automata
Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant QCA full-adder cell is proposed: This component is simple in structure and suitable for designing fault-tolerant QCA circuits. The redundant version of QCA full-adder cell is powerful in terms of implementing robust digital functions. ...
متن کامل